Ice supersaturation and its impact on chemistry and climate A. Gettelman & D. Kinnison, National Center for Atmospheric Research #### Motivation - TTL RH controls H₂O in Stratosphere - Affects Chemistry: Heterogeneous chemistry Polar Stratospheric Clouds, Polar Mesospheric Clouds - Affects Climate: radiative impact of stratospheric H₂O - RH affects Clouds & Cloud radiative impacts - Radiative impact of contrails (midlats) - Aerosol effects on cloud formation: ΔS_{crit} --> $\Delta Clouds$ - (Most) Climate models don't have supersaturation ## Outline Describe Observations of S_{ice} from: - Balloons - In-situ aircraft - Satellites Present global model solutions with S_{ice} • Impacts on chemistry and climate ## Research Aircraft: Tropics January, E. Pacific, NASA WB57 (Jensen et al, 2005) # Size of Sice Regions - Vertical Extent of S_{ice} regions 560±610m - Radiosondes over station in Germany - Spichtinger, Meteorologische Zeitschrift, 2003 - Horizontal Extent of S_{ice} regions 150 ± 250 km - MOZAIC Data - Gierens & Spichtinger, Ann. Geophysicae, 2000 - Regions are big enough to see from Satellites - − S_{ice} seen by UARS-MLS, TOVS - Broad vertical weighting difficult to interpret ## AIRS RH PDF 4% supersaturated AIRS v3 data: Gettelman et al 2006, in press J. Clim # Aura-MLS Observations (PDF) - MLS v2.1 (higher vertical resolution - 8 test days, 'strict' quality sort 17% observations supersaturated # RH Comparisons w/ AIRS 215mb Midlatitudes 215mb Tropics # AIRS Annual Sice Frequency # AIRS Frequency S_{ice} 300mb (Trop) ## Conclusions: Observations - S_{ice} exists in the atmosphere - Difficult to measure - S_{ice} Regions are large enough to see from satellites - Still a highly uncertain measurement - Frequency could be off by factor of 2 (AIRS v4) - S_{ice} Very frequent (20-50% of the time) - In UT/LS at a high latitudes - In polar regions - Around tropical tropopause # Effect of S_{ice} in a GCM - H₂O goes up and Cloud fraction goes down in supersaturation case - H₂O increases nearly linearly with S_{ice} - Approx 10-20% more in Lower stratosphere, due to Temperature - Effects Stratospheric Circulation & Chemistry (O₃) # ΔH₂O entering stratosphere # ΔT consistent with ΔH_2O ## **Chemistry Affected** Ozone Change HO_x Change O_3 and HO_x both increase above trop $(HO_x = H_2O \text{ effect, Why } + O_3? \text{ Still checking})$ ## Conclusions: Simulations - Model w/ S_{ice} has less high cloud - Reduces cloud radiative forcing - Stratospheric H₂O response almost linear - Larger increases in Jul-Sep due to Tropopause T - Slowing of stratosphere circulation - Seasonal change: consistent with +equatorial Temps - Small changes in lower strat chemistry (O₃, HO_x) - Chemistry may be due to temperature? - Global radiative impacts: - +0.9 Clear (or All) Sky (mostly H₂O) - 20% Magnitude of LW & SW Cloud Forcing - Reduces Cloud effects (decreases cooling) - Enhances H₂O feedbacks (warming) ## Overall Conclusions - Supersaturation common in UT/LS - Changing condensation (S_{ice}) modifies strat H₂O - Lower Stratosphere Temperature affected by: - Radiation (clouds) - Circulation - Chemistry? Still checking feedbacks - Circulation slows - Reduction of clouds & increase in H_2O = net heating (~1Wm⁻²), for 20% change in S_{ice} - Implications: what if aerosols change S_{ice} ?